首页    编委会    编辑部    历任主编    获奖信息    征稿简则    友情链接    English    旧版主页
  在线期刊
       最新录用
       当期目次
       过刊浏览

  下载专区
       版权协议
       征稿范文
       来稿登记表
       录用证明

  联系我们

投稿e-mail: jbnuns_sub@bnu.edu.cn

主编e-mail: jbnuns_eic@bnu.edu.cn

办公地点:北京师范大学 科技楼A区216,218,220室

电话:(010)58807851,58802050,58807872,58807713

通信处:北京市海淀区新街口外大街19号北京师范大学理科学报编辑部

邮政编码:100875

办公室e-mail: jbnuns@bnu.edu.cn

本网站暂不提供全文下载,如需全文下载请点击

中国知网

 

标题

基于小波分析的梅尔频率倒谱参数

作者

董丽娜 何怡 叶卫平

机构

北京师范大学信息科学与技术学院

摘要

采用HMM模型和MFCC参数的语音识别器对普通话中声母音素的区分度不够理想,而在基于识别的计算机辅助发音教学系统中的辅音的识别具有特别重要的意义。考虑到相同发音位置不同发音方式的声母音素变化较快且高频信息较多,本文将小波分析的方法引入到提取梅尔频率倒谱参数(MFCC)的过程当中,来提高信号高频部分的时域分辨率,提出了基于小波分析的梅尔倒谱参数MFCC_Wavelet。结合高低频不同分帧方式的MFCC_Wavelet参数与HMM模型的语音识别器,本文测试了MFCC和MFCC_Wavelet两种参数在四类发音中的区分性,实验结果表明,在相同发音位置不同发音方式、塞音与不塞音、送气音与不送气音及擦音与不擦音四类发音错误中,MFCC_Wavelet的总体效果好于MFCC。

关键词

语音识别,小波分析,MFCC,MFCC_Wavelet

引用

董丽娜,何怡,叶卫平. 基于小波分析的梅尔频率倒谱参数[J]. 北京师范大学学报(自然科学版),2015,51(5):469-474.

基金

中央高校自主科研基金资助项目(2010105565004GK);国家语委十二五科研规划资助项目(YB125-41)

分类号

TN919.8

DOI

10.16360/j.cnki.jbnuns.2015.05.007

Title

Wavelet Analysis Based MEL Frequency Cepstrum Parameters

Author

Lina Dong, Yi He1, Weiping Ye

Affiliations

College of Information Science and Technology, Beijing Normal University

Abstract

Changing rapidly over time and with higher frequency, most consonants in Chinese Mandarin need shorter analysis frame length in automatic speech recognition (ASR). In contrast, longer frame suits vowels which are comparatively stable and with lower frequency distribution. A new speech feature MFCC-Wavelet is introduced here combining Wavelet analysis with Mel Frequency Cepstrum Coefficient (MFCC) extraction. It has higher time resolution in high frequency like wavelet analysis, and possesses Mel frequency resolution of MFCC satisfying both requirements of consonant and vowel recognition. Experiments showed better performance than MFCC to differentiate plosive / non-plosive, fricative / non-fricative and aspirated / non-aspirated phonemes in Chinese Mandarin recognition. These are important specifically in ASR-based computer-assisted pronunciation teaching (CAPT).

Key words

Speech recognition, Wavelet Analysis, MFCC, MFCC_Wavelet

cite

Lina Dong, Yi He1, Weiping Ye. Wavelet Analysis Based MEL Frequency Cepstrum Parameters [J]. Journal of Beijing Normal University(Natural Science),2015,51(5):469-474.

DOI

10.16360/j.cnki.jbnuns.2015.05.007

Copyright © 2014 Journal of Beijing Normal University (Natural Science)
Designed by Mr. Sun Chumin. Email: cmsun@mail.bnu.edu.cn