首页    编委会    编辑部    历任主编    获奖信息    征稿简则    友情链接    English    旧版主页
  在线期刊
       最新录用
       当期目次
       过刊浏览

  下载专区
       版权协议
       征稿范文
       来稿登记表
       录用证明

  联系我们

投稿e-mail: jbnuns_sub@bnu.edu.cn

主编e-mail: jbnuns_eic@bnu.edu.cn

办公地点:北京师范大学 科技楼A区216,218,220室

电话:(010)58807851,58802050,58807872,58807713

通信处:北京市海淀区新街口外大街19号北京师范大学理科学报编辑部

邮政编码:100875

办公室e-mail: jbnuns@bnu.edu.cn

本网站暂不提供全文下载,如需全文下载请点击

中国知网

 

 E words
标题

基于夜间灯光数据和多地理因子 数据的人口空间化方法 ———以辽宁省为例

作者

马钰琪, 朱秀芳, 刘宪锋, 陆 楠

机构

北京师范大学地表过程与资源生态国家重点实验室;北京师范大学资源学院;环境保护信息中心

摘要

人口空间分布数据是开展灾害风险管理的基础数据,而科学、准确的人口空间化方法是实现人口空间分配的 重要途径.鉴于城镇与乡村居住地在灯光数据和自然条件影响程度上的差异,本文提出一种综合利用夜间灯光数据和多 地理因子数据的人口空间化方法,并以辽宁省2010年人口数据空间化为例进行方法验证.研究表明:1)夜间灯光数据 在灯光值较高的城镇地区与人口密度关系显著,而地理因子加权的方法则更适用于受自然条件约束多的乡村区域;2) 辽宁省人口密度在0~65572人·km-2之间,在空间上,中部平原地区人口密度较高,而两侧山地地区人口密度相对较 低,与实际情况相符;3)辽宁省抽样乡镇人口平均误差为15.3%,精度验证结果表明,本文提出的人口空间化方法能够 在乡镇尺度上具有较高的精度.

关键词

人口空间化;灯光数据;多地理因子数据;辽宁省

引用

马钰琪, 朱秀芳, 刘宪锋, 陆 楠.基于夜间灯光数据和多地理因子 数据的人口空间化方法 ———以辽宁省为例[J]. 北京师范大学学报(自然科学版),2015,51(Sup.1):57-61.

基金

国家高分辨率对地观测重大专项基金资助项目(民用部分)

分类号

P208

DOI

10.16360/j.cnki.jbnuns.2015.s1.009

Title

A Population Spatialization Method Based on DMSP / OLS Night-time Light Data and Weighted Multi-geographic factors: the Example of Liaoning Province

Author

Ma Yuqi, ZHU Xiufang, Liu Xianfeng

Affiliations

State Key Laboratory of Earth Processes and Resource Ecology,Beijing Normal University;College of Resources Science & Technology, Beijing Normal University

Abstract

Population distribution is a significant factor in pollution control and urban planning. Disaster frequency is increasing with global warming. In disaster control, human loss is the most fatal loss for a country. Therefore, precise population distribution data is necessarily required. However, traditional census data are usually at county levels or town levels at best. They are also incompatible with other geographic data and can hardly facilitate further spatial analysis. Population spatialization which scatters population into grid cells is an effective way of solving these problems. This experiment presents a new method of population spatialization by utilizing DMSP / OLS night-time light data and mixing other geographic data which are of great influence to population. Night-time light data are found to have stronger connection with population in higher DN areas. The method of mixing geographic data like land use type and DEM is more efficient in areas extremely restrained by natural conditions. Different parts of the province are therefore treated with different methods. Considering that population density in urban areas is usually higher and less restricted by natural conditions, it matches the former method. Population in rural areas suits the latter method. Plain in the middle part of the province is of higher population density than the east and west parts; population is highly concentrated in urban areas. The population density ranks from 0-65572 / km2 and the highest density place locates in the capital city Shengyang. All of the results match with actual real situation. A total of 443 towns are selected, actual and calculated populations are compared. The average relative error is only 15.3%, much better than the result of LandScan 1km spatialization data with an average relative error 40.7%, therefore our method is comparatively more accurate.

population spatialization;night-time light data;multi-graphic factors; Liaoning

cite

Ma Yuqi, ZHU Xiufang, Liu Xianfeng. A Population Spatialization Method Based on DMSP / OLS Night-time Light Data and Weighted Multi-geographic factors: the Example of Liaoning Province[J]. Journal of Beijing Normal University(Natural Science),2015,51(Sup.1):57-61.

DOI

10.16360/j.cnki.jbnuns.2015.s1.009

Copyright © 2014 Journal of Beijing Normal University (Natural Science)
Designed by Mr. Sun Chumin. Email: cmsun@mail.bnu.edu.cn