首页    编委会    编辑部    历任主编    获奖信息    征稿简则    友情链接    出版道德    English    旧版主页
  在线期刊
       最新录用
       当期目次
       过刊浏览

  下载专区
       版权协议
       征稿范文
       来稿登记表
       录用证明

  联系我们

投稿e-mail: jbnuns_sub@bnu.edu.cn

主编e-mail: jbnuns_eic@bnu.edu.cn

办公地点:北京师范大学 科技楼A区216,218,220室

电话:(010)58807851,58802050,58807872,58807713

通信处:北京市海淀区新街口外大街19号北京师范大学理科学报编辑部

邮政编码:100875

办公室e-mail: jbnuns@bnu.edu.cn

本网站暂不提供全文下载,如需全文下载请点击

中国知网

 

标题

东北典型农产区流域地下水水质评价与污染源识别

作者

郭 涛 陈海洋 滕彦国 李 娇 陈瑞晖

机构

北京师范大学水科学研究院; 地下水污染控制与修复教育部工程研究中心

摘要

在辨识传统灰色关联度法的权重计算局限性基础上,提出了一套基于超标赋权法和熵权法组合权重的地下 水水质综合评价方法,将改进后的灰色关联度法应用到东北典型农产区———拉林河流域,对该流域地下水水质进行了评 价, 并利用正定因子分解法(PMF)识别了影响拉林河流域地下水水质的潜在来源.结果表明: 1)与综合指数法、模糊数学 法、传统灰色关联度法等传统评价方法相比,改进后的灰色关联度法评价结果更加接近真实水质状况; 2)拉林河流域地 下水水质超标严重,Ⅴ类占66.7%, 仅有33.3%的水质监测点符合饮用标准,超标因子主要为铁、锰、氨氮、硝酸盐等; 3)PMF识别结果表明农业源和自然源是影响拉林河流域地下水水质的主要来源, 其中自然源贡献占比约61.5%, 受水 文地质及农药化肥施用影响的农业混合源占比约38.5%.

关键词

灰色关联度法; 地下水水质评价; 正定因子分解; 源识别

引用

郭 涛 陈海洋 滕彦国 李 娇 陈瑞晖. 东北典型农产区流域地下水水质评价与污染源识别.[J]. 北京师范大学学报(自然科学版),2017,53(3): 316-322.

基金

国家科技重大专项资助项目(2014ZX07201-010); 国家自然科学基金资助项目(41303069); 北京市自然科学基金资助项目(8172030)

分类号

X824; X523

DOI

10.16360/j.cnki.jbnuns.2017.03.012

Title

Pollution assessment and source identification of basin groundwater in typical agricultural areas in Northeast China

Author

GUO Tao CHEN Haiyang TENG Yanguo LI Jiao CHEN Ruihui

Affiliations

College of Water Sciences, Beijing Normal University; Engineering Research Center of Ground water Pollution Control and Remediation of Ministry of Education

Abstract

Due to limitations of traditional grey relation alanalysis, an improved evaluation method of ground water quality by weighted-grey relational analysis (WGRA) was proposed. This new method was used to characterize basin ground water pollutions of Lalin River, a typical agricultural area of the Chinese Northeast. WGRA results were compared with classical assessment methods (comprehensive index, fuzzy mathematics and traditional grey relational analysis). Positive matrix factorization (PMF) was employed for source identification. Evaluation with single factor analysis revealed iron, manganese, ammonia and nitrate to be the main pollution factors on the Lalin River. WGRA evaluation indicated that 66.7% of groundwater was of class V, only 33.3% met drinking water standards. Compared to other methods, the WGRA results were closer to the environmental data of the area. PMF identification showed that potential sources to affect groundwater quality of Lalin River are agricultural nonpoint sources (pesticide chemical, fertilizer application) and natural geological background, with contributions of 38.5% and 61.5% from each.

Key words

grey relation alanalysis; ground water quality assessment; positive matrix factorization; source identification

cite

GUO Tao CHEN Haiyang TENG Yanguo LI Jiao CHEN Ruihui. Pollution assessment and source identification of basin groundwater in typical agricultural areas in Northeast China [J]. Journal of Beijing Normal University (Natural Science), 2017,53(7): 316-322.

DOI

10.16360/j.cnki.jbnuns.2017.03.012

Copyright © 2014 Journal of Beijing Normal University (Natural Science)
Designed by Mr. Sun Chumin. Email: cmsun@mail.bnu.edu.cn